МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Государственный аграрный университет Северного Зауралья»

Программа вступительного испытания по физике для поступающих по программам бакалавриата и программам специалитета

05.03.06 Экология и природопользование 06.03.01 Биология

19.03.02 Продукты питания из растительного сырья 20.03.01 Техносферная безопасность 20.03.02 Природообустройство и водопользование 21.03.02 Землеустройство и кадастры 35.03.01 Лесное дело

35.03.02 Технология лесозаготовительных и деревоперерабатывающих производств 35.03.03 Агрохимия и агропочвоведение

35.03.04 Агрономия 35.03.05 Садоводство 35.03.06 Агроинженерия

35.03.07 Технология производства и переработки сельскохозяйственной продукции 35.03.08 Водные биоресурсы и аквакультура

Программа вступительных испытаний по физике составлена на базе обязательного минимума содержания основных образовательных программ и требований к уровню подготовки выпускников, предусмотренных федеральным компонентом государственного образовательного стандарта начального общего, основного общего и среднего (полного) общего образования по физике и Федерального базисного учебного.

Цель экзаменационной работы - оценить уровень общеобразовательной подготовки абитуриентов по физике с целью конкурсного отбора.

Форма проведения испытания:

Вступительное испытание проводится в письменной форме.

Задания в экзаменационной работе предусматривают проверку усвоения знаний и умений абитуриентов на разных уровнях: воспроизведение знаний, применять знания и умения в знакомой, измененной и новой ситуациях.

Экзаменационная работа состоит из двух частей, общее количество заданий-двадцать.

Впервой части работы:

В заданиях 1-15 необходимо выбрать правильный вариант ответа.

Вторая часть экзаменационной работы состоит из пяти задач.

Ответ к заданиям 16-20 ответом является целое число или конечная десятичная дробь. При вычислениях разрешается использовать непрограммируемый калькулятор. При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

На выполнение вступительных испытаний отводится 1 час (60 минут).

Шкала оценивания:

П	C .
Показатели оценивания	Сумма баллов
Абитуриент не знает фундаментальные	0-35
физические понятия и законы, теории	(абитуриент не участвует
классической и современной физики, границы	в конкурсном отборе)
применимости тех или иных физических	
законов и теорий;	
затрудняется объяснить современные	
физические представления об окружающем	
человека современном мире;	
не проявил способности решать задачи из	
различных областей физики.	
Абитуриент знает фундаментальные	36-100
физические понятия и законы, теории	(абитуриент участвует в
классической и современной физики, границы	конкурсном отборе
применимости физических законов и теорий;	

умеет решать задачи из различных областей физик; имеет навыки работы с приборами для физических исследований, проводить физический эксперимент и оценивать погрешность измерений; выделять конкретное физическое содержание в задачах, способен анализировать и оценивать.

Требования к уровню подготовки абитуриентов по физике

Требование	Контролируемые знания и умения	
стандарта		
1. Знать	1.1 Называть и описывать фундаментальные	
физическую	физические понятия: явления, физические величины,	
сущности явлений	единицы их измерения.	
природы, виды	1.2 Формулировать физические законы, постулаты	
материи (вещество	основных физических теорий.	
и поле), движение	1.3 Характеризовать уровни усвоения основных идей	
как способе	механики, атомно-молекулярного учения о строении	
существования	вещества, элементов электродинамики и квантовой	
материи.	физики.	
2. Применять	2.1 Применять научные методы познания,	
понятийный	наблюдения физических явлений, проведения	
аппарат и	опытов.	
символический язык	2.2 Владение навыками решения физических задач.	
физики.		
3. Анализировать и	3.1 Владение навыками применения анализа	
систематизировать	полученных данных, навыками выбора методов и	
условия	средств решения физических задач.	
поставленной	3.2 Критически оценивать полученный результат.	
физической задачи.		

СОДЕРЖАНИЕ ПРОГРАММЫ:

Введение в физику. Предмет физики. Современная физика как культура наблюдений, моделирования, экспериментального исследования и количественного прогнозирования явлений природы. Связь физики с другими науками. Относительный и приближенный характер любых наблюдений и измерений. Основные и производные единицы измерения физических величин.

Основы кинематики. Характеристики поступательного движения и вращательного движения. Механическое движение. Характеристики

поступательного движения: траектория, путь, перемещение, скорость, ускорение (среднее и мгновенное), тангенциальное и центростремительное. Взаимосвязь характеристик при прямолинейном и криволинейном движении.

Динамика поступательного движения. Динамика поступательного движения. Масса тела, взаимодействие и сила. Законы Ньютона (1, 2, 3). Фундаментальные взаимодействия и виды сил. Закон изменения импульса, закон сохранения импульса в изолированной системе. Работа, мощность, энергия. Графическое изображение работы. Закон сохранения полной механической энергии.

Механические колебания. Резонанс. Гармоническое колебание и его характеристики: смещение, амплитуда, частота. Уравнение колебания и его график. Математический маятник. Затухающие и вынужденные колебания, автоколебания. Резонанс, его проявление и использование. Вибрация. Применение вибрации в производстве.

Волновые процессы. Продольные и поперечные волны. Длина волны. Звук, инфразвук, ультразвук, характеристики звука. Использование акустических волн. Когерентные волны. Отражение звука. Элементы специальной теории относительности.

МКТ. Основные положения МКТ. Предпосылки и опытное обоснование. Газы, идеальный газ. Давление газа. Основное уравнение теории идеального газа. Газовые законы. Уравнение Менделеева-Клайперона. Уравнение состояния идеального газа. Средняя кинетическая энергия, приходящаяся на молекулы идеального газа. Полная кинетическая энергия молекулы газа. Внутренняя энергия любой массы газа. Молекулярно - кинетическое толкование температуры. Абсолютная температура. Удельные и молярные теплоемкости газов. Физический смысл молярной газовой постоянной. Строение жидкостей и твердых тел. Особенности строения жидкостей и твердых тел. Молекулярные явления в превращения. жидкостях. Фазовые Испарение, конденсация, Абсолютная, максимальная, относительная влажность. Точка росы. Плавление и кристаллизация. Возгонка.

Термодинамика. 1-е начало термодинамики. Работа, совершаемая при изменении объема газа. Адиабатный процесс. Работа адиабатного процесса, адиабатное изменение объема газа, адиабатический процесс в природе и технике. Идеальная тепловая машина. Круговые процессы. Идеальная тепловая машина. Прямой и обратный цикл. Цикл Карно. Циклы реальных тепловых двигателей.

Электрическое поле. Характеристики электростатического поля: напряженность, линии напряженности, напряженность поля точечного заряда. Однородное поле, потенциал, потенциал поля точечного заряда. Связь напряженности и потенциала. Электроемкость. Конденсаторы. Электроемкость

плоского конденсатора. Энергия заряженного проводника. Энергия заряженного конденсатора. Диэлектрики в электрическом поле.

Электрический ток. Генератор, сторонние силы. ЭДС. Закон Ома для замкнутой цепи. Ток в металлических участка цепи, для проводниках. Сопротивление, зависимость сопротивления проводника от температуры. Терморезисторы. Работа и мощность тока. Полупроводники. Типы проводимости Собственная примесная полупроводников. И проводимость. Зависимость проводимости полупроводников от температуры. Применение полупроводников.

Магнитное поле. Магнитное поле, его обнаружение и изображение. Характеристики магнитного поля: индукция магнитного поля, линии индукции. Диамагнетики, парамагнетики, ферромагнетики. Поток магнитной индукции. Электромагнитная индукция. Электромагнитные колебания. Свободные и вынужденные колебания. Резонанс. Электромагнитная индукция. Закон Фарадея, правило Ленца. Переменный ток. Трансформаторы. Токи Фуко. Самоиндукция, ЭДС, индуктивность.

Квантовая теория света. Свет как электромагнитная волна. Фотоэффект. Законы фотоэффекта. Красная граница фотоэффекта. Химическое действие света. Парниковый эффект.

Волновая оптика. Отражение и преломление. Интерференция. Когерентные источники и методы их получения. Условия интерференционного максимума и минимума. Интерференционные картины, создаваемые различными источниками. Дифракция света и её проявления. Дифракционная решётка. Условия максимума, минимума. Естественный свет. Поляризованный свет. Принцип действия поляриметра.

Ядерная физика. Ядерная модель строения атома. Дискретность энергетических состояний атома. Постулаты Бора. Атомное ядро, изотопы. Применение изотопов в сельском хозяйстве.

Физика ядра. Радиоактивность, а, р, у - излучение. Влияние радиоактивности на жизнедеятельность организмов. Законы радиоактивного распада. Период полураспада. Элементарные частицы, их характеристики.

ПРИМЕРНЫЕ ВОПРОСЫ:

- 1. Тело брошено вертикально вверх. Через 0,5 с после броска его скорость равна 20 м/с. Какова начальная скорость тела? Сопротивлением воздуха пренебречь.
- 1) 15 m/c
- 2)20,5 m/c
- 3)25 m/c
- 4) 30 m/c
- 2. Груз массой 4 кг подвешен к укрепленному в лифте динамометру. Лифт начинает подниматься с постоянным ускорением 1m/c^2 . Чему равно

установившееся показание прибора?
1) 44 H
2) 80 H
3) 4 H
4) 36 H
3. Мальчик подбросил мяч массой 400 г на высоту 3 м. Какой потенциальной
энергией будет обладать мяч на этой высоте?
1) 1,2Дж
2) 4 Дж
3) 7,5 Дж
4) 12 Дж
4. Из контейнера с твердым литием изъяли 4 моль этого вещества. При этом число
атомов лития в контейнере уменьшилось на
$1)4*10^{23}$
2) $1*10^{23}$
$3) 24*10^{23}$
$4) 36*10^{23}$
5. Идеальный газ получил количество теплоты, равное 300 Дж, и совершил работу,
равную 100 Дж. При этом внутренняя энергия газа:
1) увеличилась на 400 Дж
2) увеличилась на 200 Дж
3) уменьшилась на 400 Дж
4) уменьшилась на 200 Дж
6. Тепловая машина за цикл совершает работу 50 Дж и отдает холодильнику
количество теплоту, равное 100 Дж. Чему равен КПД тепловой машины?
1) 100%
2) 50%
3) 33%
4) 67%
7. Пылинка, имевшая положительный заряд + 2е, при освещении потеряла один
электрон. Каким стал заряд пылинки?
1) 0
2)-2e
3) + 3e
4)-e
8. Если сила тока в цепи при подключении резистора в 2 Ом равна 2 А, чему равна ЭДС источника тока с внутренними сопротивлением 1 Ом?
• •
1) 1 B
2) 3 B
3) 6 B
4) 12 B
9. Какова индукция магнитного поля, в котором на проводник с длиной активной
части 5 см действует сила 50 мН? Сила тока в проводнике 25 А. Проводник
расположен перпендикулярно линиям индукции магнитного поля.
1) 10 Тл

- 2) 0,4 Тл
- $3)0,04T\pi$
- **4) 4** Тл
- 10. Ядро бария $^{143}_{56}$ Ва в результате испускания нейтрона, а затем электрона превратилось в ядро:
- 1) ¹⁴⁵₅₆Ba
- 2) ¹⁴²₅₇Ba 3) ¹⁴³₅₈Ba
- 4) ¹⁴⁴₅₅Ba
- 11. Материальная точка, двигаясь равноускоренно по прямой, за время t увеличила скорость в 3 раза, пройдя путь 20 м. Найдите t (с), если ускорение точки равно 5 M/c^2 .
- 12. Шарик массой 200 г скользит по желобу без трения с высоты Н без начальной скорости и делает «мертвую петлю», радиус которой 1.5 м. Сила давления на желоб в верхней точке петли равна 2 Н. Определите высоту Н (м)?
- 13. Кусок льда опустили в термос с водой. Начальная температура льда 0^{0} С, начальная температура воды 30°C. Теплоемкостью термоса можно пренебречь. При переходе к тепловому равновесию часть льда массой 210 г растаяла. Чему равна исходная масса воды (г) в термосе? Удельная теплоемкость воды с=4200 Дж/(кг*К), удельная теплота плавления льда $\lambda = 3.3*10^5$ Дж/кг.
- 14. В тонкой рассеивающей линзе получено уменьшенное в 4 раза изображение модуль фокусного расстояния предмета. Определите (cm), изображение предмета находится на расстоянии f=9 см от линзы.
- 15. На металлическую пластинку падает свет с длиной волны 415,5 нм. Фототок прекращается при задерживающей разности потенциалов 1 В. Определите работу выхода электронов из металла (эВ). Округлите до целых. Заряд электрона $1,6\cdot 10^{-19}$ Кл. Постоянная Планка $h=6,6*10^{-34}$ Дж*с. Скорость света в вакууме $c=3*10^8$ м/с. $1 \ni B = 1,6 \cdot 10^{-19} \text{ Дж}.$

Методические рекомендации для абитуриентов

Повторить основные разделы физики: кинематику, динамику, термодинамику, электростатику, законы постоянного тока, электродинамику, оптику, законы атомной и ядерной физики.

Решать задачи по данным разделам.

При возникновении затруднении с решением, постарайтесь найти решение подобных задач в специальной литературе, с примерами решения.

Абитуриент может проверить свои знания и пройти пробное тестирование по материалам ЕГЭ по физике на одном из сайтов:

http://www.egeru.ru/;

http://www1.ege.edu.ru/content/view/21/43/;

http://window.edu.ru/window;

http://www.school.edu.ru/default.asp

Список литературы для подготовки к вступительным испытаниям

- 1. Материалы ЕГЭ 2018, 2019, 2020, 2021 по физике по проверке выполнения заданий с развернутым ответом.
- 2. Типовые тестовые задания ЕГЭ 2021 по физике.
- 3. Ханнанов Н.К., Орлов В.А. Решения тематических тестовых заданий ЕГЭ 2017 по физике./ Н.К. Ханнанов,В.А. Орлов- Москва: Просвещение, 2017.-204 с.
- 4. Кабардин А.А, Орлов В.А.. Решения тематических заданий ЕГЭ 2017 по физике./А.А. Кабардин, В.А. Орлов. -Москва: Экзамен, 2017.-456 с.
- 5. Лукашева Е.В. Решение тематических тестовых заданий ЕГЭ 2017 по физике./ Е.В. Лукашева. -Москва: Экзамен, 2017.-359 с.
- 6. Мякишев Г.Я., Буховцев Б.Б., Чарухин В.М. Физика 1 1 класс. /Г.Я. Мякишев, Б.Б. Буховщев, В.М. Чарухин. - Москва: Просвещение, 2016.-213 с.
- 7. Громов С.В., Шаронов Н.В., Левитан Е.П. Физика 11 класс. /С.В. Громов, Н.В. Шаронов, Е. Г1. Левитан. - Москва: Просвещение, 2017.-258 с.
- 8. Рымкевич А.П. Задачник по физике 10-11 класс./ А.П. Рымкевич. Москва: Просвещение, 2017.-316 с.
- 9. http://www.egeru.ru/;
- 10.http://wwwl.ege.edu.ru/content/view/21/43/;
- 11.http://window.edu.ru/window;
- 12.http://www.school.edu.ru/default.asp

Программа вступительных испытаний по физике рассмотрена и утверждена на кафедре энергообеспечения сельского хозяйства (протокол № 2 от 23.09.2024 г).

Заведующий кафедрой

Разработчик программы И.В.Савчук

Н.В.Сашина