Документ подписан простой электронной подписью

Информация о владельце: Министерство науки и высшего образования РФ

ФИО: Бойко Елена Григорьев ВО Государственный аграрный университет Северного Зауралья

Должность: Ректор

Дата подписания: 23.05.2024 13:23:51

Инженерно-технологический институт

Уникальный программный ключ: Кафедра энергообеспечения сельского хозяйства

e69eb689122030af7d22cc354bf0eb9d453ecf8f

«Утверждаю»

И.о. заведующего кафедрой

Киу — А.С. Кизуров « <u>01</u> » июля <u>2022г.</u>

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ФИЗИКА

для направления подготовки 36.03.01 Ветеринарно-санитарная экспертиза профиль «Ветеринарно-санитарная экспертиза»

Уровень высшего образования - бакалавриат

Форма обучения: очная, заочная

При разработке рабочей программы учебной дисциплины в основу положены:

- 1) ФГОС ВО по направлению подготовки 36.03.01 Ветеринарно-санитарная экспертиза утвержденный Министерством образования и науки РФ от «19» сентября 2017 г., приказ № 939
- 2) Учебный план основной образовательной программы 36.03.01 Ветеринарно-санитарная экспертиза, профиль «Ветеринарно-санитарная экспертиза» одобрен Ученым советом ФГБОУ ВО ГАУ Северного Зауралья от «01» июля 2022 г. Протокол №11

Рабочая программа учебной дисциплины одобрена на заседании кафедры «Энергообеспечение сельского хозяйства» от «01» июля 2022 г. Протокол №7

И.о. заведующего кафедрой

А.С.Кизуров

Рабочая программа учебной дисциплины одобрена методической комиссией института от «07» июля 2022 г. Протокол № 11

Председатель методической комиссии института

О.А. Мелякова

Разработчик:

Корнев С.М., доцент кафедры энергообеспечения сельского хозяйства

Директор института:

А.А. Бахарев

alif

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Коды компетен ций	результаты освоения	Индикатор достижения компетенции	Перечень планируемых результатов обучения по дисциплине
ОПК-4	Способен обосновывать и реализовывать в профессиональн ой деятельности современные технологии с использованием приборно-инструментальн ой базы и использовать основные естественные, биологические и профессиональные понятия, а также методы при решении общепрофессион альных задач	ИД-4 _{ОПК-4} Использует знания основных законов физики необходимых для решения стандартных задач в области профессиональной деятельности	Знать: - современные физические представления об окружающем человека современном мире; - основные теории и фундаментальные понятия физики; законы и явления, границы их применимости; - назначение и принципы действия важнейших физических приборов. Уметь: - применять различные методы физических измерений и обработки экспериментальных данных; - объяснять основные наблюдаемые природные и техногенные явления и эффекты с позиции фундаментальных физических представлений; - решать задачи из различных разделов физики; - работать с аппаратурой для физических исследований; - выделять конкретное физическое содержание в прикладных задачах профессиональной деятельности. Владеть: - навыком проведения физического эксперимента, в том числе правильно эксплуатировать основные приборы и оборудование в современной физической лаборатории; - навыком обработки и интерпретирования результатов эксперимента; - навыком применения основных методов физико-математического анализа для решения естественнонаучных задач.

2. Место дисциплины в структуре образовательной программы

Данная дисциплина относится к $\mathit{Enoky}\ 1$ обязательной части образовательной программы.

Дисциплина Физика базируется на знаниях, полученных обучающимися в соответствии с федеральным государственным образовательным стандартом среднего (полного) общего образования по предмету Физика.

Физика является предшествующей дисциплиной для дисциплин: концепция современного естествознания, сельскохозяйственная радиобиология, животноводство в условиях радиоактивного загрязнения среды, безопасность жизнедеятельности, механизация и автоматизация животноводства.

Дисциплина изучается на 1 курсе во 2 семестре по очной форме обучения, на 1 курсе во 2 семестре – заочной форме.

3. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 108 часов, 3 зачетных единиц

Вид учебной работы	Or	нная форма	Зас	очная форма
	Всего	семестры	Всего	семестры
	часов	2	часов	*
				2
Аудиторные занятия	48	48	14	14
(всего)				
В том числе:	-	-	-	-
Лекционного типа	16	16	6	6
Семинарского типа	16	16	4	4
Лабораторные занятия	16	16	4	4
Самостоятельная работа	60	60	94	94
(всего)				
В том числе:	-	-	-	-
Проработка материала	30	30	69	69
лекций, подготовка к				
занятиям				
Самостоятельное изучение	4	4		
тем				
Реферат	26	26	-	-
Контрольные работы	-	-	25	25
Вид промежуточной		зачет		зачет
аттестации (зачет, экзамен)				
Общая трудоемкость:	108	108	108	108
	3	3	3	3

4. Содержание дисциплины

4.1. Содержание разделов дисциплины

	Наименование раздела	Содержание раздела						
	дисциплины							
1	2	3						
1.	Механика и	Кинематика и динамика поступательного и						
	биомеханика	вращательного движения.						
	(колебания и волны).	Механическое движение. Системы отсчета. Скорость и						
	Акустика	ускорение как производные перемещения (обобщение						
		понятия скорости). Понятие о градиенте физической						
		величины. Нормальное, тангенциальное и полное						
		ускорение при криволинейном движении. Прямая и						
		обратная задача кинематики.						

	T	п						
		Понятие силы. Законы Ньютона в инерциальных						
		системах отсчета.						
		Уравнение движения свободной и несвободной						
		материальной точки. Движение системы материальных						
		точек.						
		Статика. Энергия. Работа. Мощность. Законы						
		сохранения.						
		Аксиомы статики. Геометрическое условие равновесия						
		сходящейся системы сил на плоскости. Проекции сил на						
		плоскости. Аналитические уравнения равновесия. Связи и						
		реакции связей.						
		Момент сил относительно неподвижной оси. Условия						
		равновесия тел, имеющих ось вращения. Пара сил. Центр						
		тяжести твердого тела. Применение условия равновесия						
		для вычисления центра тяжести. Статические системы в						
		опорно-двигательном аппарате животных. Момент						
		импульса. Закон сохранения момента импульса. Работа						
		переменной силы. Кинетическая и потенциальная энергии. Мощность и КПД. Закон сохранения энергии.						
		Закон сохранения импульса.						
		Закон сохранения импульса. Механические колебания. Звук.						
		Колебательное движение в биологических объектах.						
		Линейный гармонический осциллятор. Уравнение и						
		графики смещения скорости и ускорения при						
		гармонических колебаниях. Пружинный маятник. Энергия гармонического осциллятора. Механические						
		колебания в промышленном животноводстве. Вибрации в						
		с/х. Затухающие и вынужденные колебания. Сложение						
		гармонических колебаний. Биения.						
2.	Молекулярная	Основные положения МКТ. Идеальный газ. Реальный газ.						
	физика	Основное уравнение МКТ. Следствия из него.						
		Распределение энергии по степеням свободы. Внутренняя						
		энергия идеального газа. Распределение молекул по						
		скоростям. Средняя длина свободного пробега. Явления						
		переноса. Законы Фика и Фурье. Явления переноса в						
		биологических системах. Виды теплообмена.						
		Терморегуляция организма и теплообмен в с/х.						
		Уравнение Ван-дер-Ваальса. Кристаллическое состояние вещества. Сжижение газов.						
3.	Термодинамика и	вещества. Сжижение газов. Физические основы термодинамики. Основы						
٥.	т ермодинамика и биоэнергетика	1						
	опоэнсрістика	термодинамики в биологических объектах.						
		Термодинамические параметры и процессы. Теплота и						
		работа, 1-е начало термодинамики. Работа газа в						
		изопроцессах. Теплоемкость идеального газа. Уравнение						
		Майера. Адиабатический процесс. Уравнение Пуассона.						
		Обратимые и необратимые процессы, 2-е начало						
		термодинамики. Принцип действия тепловой машины.						
		Цикл Карно и его КПД. Тепловые машины и						
		холодильные установки в с/х. Понятие энтропии. Закон						
		не убывания энтропии.						
		Понятие об открытых термодинамических системах.						
	<u> </u>	попитие об открытых термодинамических системах.						

		Живой организм как открытая термодинамическая
		система. 1-е начало термодинамики в биологии.
		Превращение энергии в биологических системах и
		энергетический баланс живого организма. Теплопродукция. Аккумулирование энергии в молекулах
		АТФ. Перенос тепла в живых организмах. 2-е начало
		термодинамики в биологии. Формула Пригожина. КПД
		мышцы.
4.	Электричество и	Электростатика.
	магнетизм	Электростатическое поле (СЭП) и его напряженность.
		Поток напряженности, теорема Гаусса. Работа по
		перемещению электрического заряда в СЭП. Потенциал.
		Напряженность поля как градиент потенциала.
		Проводники в СЭП.
		Электростатическая защита. Заземление.
		Электростатическое явление в с/х производстве и борьба
		с ними. Диэлектрики в СЭП.
		Поляризация диэлектриков и виды поляризации.
		Диэлектрическая проницаемость. Диэлектрические
		свойства тканей и изменение их при патологиях.
		Применение СЭП в физиотерапии. Электроемкость
		проводника. Конденсаторы. Энергия СЭП.
		Законы постоянного тока. Электрический ток в
		полупроводниках. Электрический ток в газах.
		Электронная теория тока в металлах. Закон Ома в
		дифференциальном виде. Потенциометры. Тепловые
		действия тока. Электронагревательные устройства в с/х
		производстве.
		Свойства полупроводниковых материалов. Зонная
		теория электропроводимости. Термоэлектронная
		эмиссия. Диод. Триод. Запирающий слой в
		полупроводниках его выпрямляющее действие.
		Электрические явления в биологических системах.
		Самостоятельная и несамостоятельная проводимость
		газов. Вольтамперная характеристика газового разряда.
		Законы электролиза. Порог разряжения в тканях.
		Прохождение постоянного тока через живые ткани.
		Действие постоянного тока на организм. Гальванизация,
		электрофорез, электрод. потенциал. Мембранный
		потенциал. Транспорт веществ через клеточные
		мембраны. Осмос.
		Понятие о калиевонатриевом насосе. Биопотенциалы.
		Электромагнетизм. Биологическое действие магнитного
		поля.
		Магнитное взаимодействие проводника с током.
		Индукция ПМП. Закон Био – Савара – Лапласа. Вещество
		в ПМП. Магнитная проницаемость. Диамагнетики,
		парамагнетики, ферромагнетики. Действие ПМП на
		парамагнетики, ферромагнетики. Действие тпупт на

	1	Г. — — — —						
		биологические объекты. Геомагнитное поле. Применение						
		МП постоянных магнитов в с/х производстве. Электромагнитная индукция. Опыты Фарадея. Явления						
		самоиндукции. Энергия магнитного поля. Действие						
		электромагнитного поля на живой организм.						
		Применение ЭМП в физиотерапии.						
5.	Оптика и световые	Геометрическая оптика. Основы фотометрии. Волновая						
	явления в организмах	оптика.						
		Отражение и преломление света. Полное отражение и						
		использование этого явления в оптических приборах.						
		Световоды и их применение. Энергетические						
		1						
		фотометрические величины. Кривая видности. Световые						
		фотометрические величины.						
		Интерференция света и способы ее наблюдения.						
		Дифракция света. Поляризация света, поляризованный и						
		естественный свет. Дисперсия света. Спектры и их типы.						
		Спектральный анализ. Поглощение света. Законы Бугера и Бера Биологическое значение солнечного света УФ и						
		и Бера. Биологическое значение солнечного света. УФ и						
		ИК излучение, их свойства и методы наблюдения. Биологическое действие УФ и ИК излучения.						
		, ,						
		Применение УФ излучения для с/х производства.						
6.	Квантовая и ядерная	Квантовая оптика. Строение атома. Лазеры						
0.	физика	Ядерная модель строения атома. Дискретность						
	P ioniu							
		Атомное ядро, изотропы. Спектр атома водорода, правило						
		отбора. Уравнения Шредингера.						
		Радиоактивность, естественный срок радиоактивности. α,						
		β, γ – излучение. Влияние радиоактивности на						
		жизнедеятельность организмов. Законы радиоактивного						
		распада. Период полураспада. Среднее время жизни.						
		Активность элемента.						
		Элементарные частицы, их характеристики и						
		взаимодействие. Античастицы. Дуализм свойств						
		микрочастиц. Кварковый состав адронов. Квантовый						
		механизм излучения света. Формула Планка.						
		Фотоэффект. Квантовый механизм поглощения света.						
		Фотоны. Корпускулярно – волновой дуализм. Понятие о						
		фотохимических реакциях. Фотобиологические реакции.						
		Фотоэффект. Уравнение Эйнштейна. Люминесценция.						
		Рентгеновское и тепловое излучение.						
		Планетарная модель атома. Теория Бора. Квантовый						
		механизм электронных переходов. Спин электрона.						
		Принцип Паули. Природа теплового излучения.						
		Абсолютно черное тело. Закон Стефана – Больцмана,						
		Вина. Тепловое излучение тела животных. Различные						
		виды люминесценции. Правило Стокса. Закон Вавилова.						
		Люминесцентный анализ. Получение рентгеновского						
		The point on the point of the p						

излучения, е	го	свойства.	Рентгено	одиагностик	а. Лазеры.
Физические	И	биологич	неские	свойства	лазерного
излучения.					

4.2 Разделы дисциплины и виды занятий

Очная форма обучения

	Очная форма обучения						
сем	№	Наименование раздела дисциплины	Лекц.	Семин.	Лаб	CP	Всего
ест	Π/Π		типа	типа			часов
p							
	1	Механика и биомеханика (колебания	2	2	2	8	14
		и волны). Акустика					
	2	Молекулярная физика	4	4	4	10	22
1	3	Термодинамика и биоэнергетика	2	2	-	10	14
	4	Электричество и магнетизм	2	2	6	12	22
	5	Оптика и световые явления в организмах	4	4	4	10	22
	6	Квантовая и ядерная физика	2	2	-	10	14
	1	Итого:	16	16	16	60	108
		Всего:	16	16	16	100	108

Заочная форма обучения

сем	No	Наименование раздела дисциплины	Лекц.	Семин.	Лаб	CP	Всего
ест	п/п		типа	типа			часов
p							
	1	Механика и биомеханика (колебания	2	-	-	16	18
		и волны). Акустика					
	2	Молекулярная физика	2	2	2	14	20
1	3	Термодинамика и биоэнергетика	-	-	-	16	16
	4	Электричество и магнетизм	2	2	2	16	22
	5	Оптика и световые явления в	-	-	-	16	16
		организмах					
	6	Квантовая и ядерная физика	-	-	-	16	16
	Итого:			4	4	94	108
		Всего:	16	16	16	100	108

4.3. Занятия семинарского типа

№	№ раздела	•	1 2	емкость ac.)
Π/Π	дисципл	Тема	очная	заочная
11,11	ины		O-man	Заочная
1	2	3	4	5
1.	1	Понятие силы. Законы Ньютона в инерциальных системах отсчета.	2	2
2.	2	Основное уравнение МКТ. Следствия из него. Распределение энергии по степеням свободы. Внутренняя энергия идеального газа.	2	2
3.	2	Виды теплообмена. Терморегуляция организма и теплообмен в с/х. Уравнение Ван-дер-Ваальса.	2	-
4.	3	Термодинамические параметры и процессы. Теплота и работа, 1-е начало термодинамики. Работа газа в изопроцессах.	2	-
5.	4	Электронная теория тока в металлах. Закон Ома в дифференциальном виде. Потенциометры. Тепловые действия тока. Электронагревательные устройства в с/х производстве	2	2
6.	5	Отражение и преломление света. Полное отражение и использование этого явления в оптических приборах. Световоды и их применение	2	-
7.	5	Интерференция света и способы ее наблюдения. Дифракция света. Поляризация света, поляризованный и естественный свет.	2	-
8.	6	Формула Планка. Фотоэффект. Квантовый механизм поглощения света. Фотоны.	2	-
		Итого во 2 семестре:	16	4
		Всего:	16	4

4.5. Примерная тематика курсовых проектов (работ) - не предусмотрено ОПОП.

5. Организация самостоятельной работы обучающихся по дисциплине

5.1 Типы самостоятельной работы и её контроль

Тип самостоятельной работы	Форма	обучения	Текущий контроль
	очная	заочная	
Проработка материала лекций,	30		тестирование
подготовка к занятиям		69	
Самостоятельное изучение тем	4		тестирование
			или
			собеседование
Расчетно-графические работы	26	-	защита
Контрольные работы	-	25	защита
всего часов:	60	94	

5.2 Учебно-методические материалы для самостоятельной работы

Методические указания для самостоятельной работы по дисциплине Физика для студентов очной, очно-заочной и заочной форм обучения по направлению подготовки Зоотехния, / Сост. Е. А. Проскурякова. – Тюмень: ГАУ Северного Зауралья, 2015. – 61 с.

5.3 Темы, выносимые на самостоятельное изучение

- 1. Момент сил относительно неподвижной оси. Условия равновесия тел, имеющих ось вращения. Пара сил. Центр тяжести твердого тела.
- 2. Применение условия равновесия для вычисления центра тяжести. Статические системы в опорно-двигательном аппарате животных.
- 3. Явления переноса. Законы Фика и Фурье. Явления переноса в биологических системах. Виды теплообмена. Терморегуляция организма и теплообмен в с/х.
- 4. Уравнение Ван-дер-Ваальса. Кристаллическое состояние вещества. Сжижение газов.
- 5. Обратимые и необратимые процессы, 2-е начало термодинамики.
- 6. Принцип действия тепловой машины. Цикл Карно и его КПД. Тепловые машины и холодильные установки в c/x.
- 7. Понятие энтропии. Закон не убывания энтропии. Понятие об открытых термодинамических системах. Живой организм как открытая термодинамическая система.
- 8. 1-е начало термодинамики в биологии. Превращение энергии в биологических системах и энергетический баланс живого организма. Теплопродукция. Аккумулирование энергии в молекулах АТФ. Перенос тепла в живых организмах.
- 9. 2-е начало термодинамики в биологии. Формула Пригожина. КПД мышцы.
- 10. Электрические явления в биологических системах.
- 11. Самостоятельная и несамостоятельная проводимость газов. Вольтамперная характеристика газового разряда. Законы электролиза.
- 12. Порог разряжения в тканях. Прохождение постоянного тока через живые ткани. Действие постоянного тока на организм. Гальванизация, электрофорез, электрод. потенциал.
- 13. Мембранный потенциал. Транспорт веществ через клеточные мембраны. Осмос. Понятие о калиево натриевом насосе. Биопотенциалы.
- 14. Электромагнитная индукция. Опыты Фарадея. Явления самоиндукции. Энергия магнитного поля. Действие электромагнитного поля на живой организм.
- 15. Применение ЭМП в физиотерапии.
- 16. Интерференция света и способы ее наблюдения. Дифракция света.
- 17. Поляризация света, поляризованный и естественный свет. Дисперсия света. Спектры и их типы. Спектральный анализ.
- 18. УФ и ИК излучение, их свойства и методы наблюдения. Биологическое действие УФ и ИК излучения. Применение УФ излучения для c/x производства.
- 19. Природа теплового излучения. Абсолютно черное тело. Закон Стефана Больцмана, Вина. Тепловое излучение тела животных.
- 20. Различные виды люминесценции. Правило Стокса. Закон Вавилова. Люминесцентный анализ.
- 21. Получение рентгеновского излучения, его свойства. Рентгенодиагностика.
- 22. Лазеры. Физические и биологические свойства лазерного излучения.

5.3. Темы рефератов:

- 1. Биологическое действие рентгеновских лучей.
- 2. Ультразвук и биология.
- 3. Эхо в жизни животных.
- 4. Биофизика ультразвука.
- 5. Роль момента силы, момента инерции в движении насекомых, птиц, животных.
- 6. Теплообмен, его роль в жизни животных.
- 7. Применение электричества в биологии.
- 8. Электрофизика живого организма.
- 9. Как появляются биотоки.
- 10. Биофизика поражения электричеством.
- 11. Биологическое действие радиоактивных лучей.
- 12. Электромагнитное излучение и его действие на организм животных.
- 13. Действие ионизирующих излучений на клетку.

- 14. Влияние ионизирующих излучений на нервную систему, органы чувств, ткани, эндокринные железы.
- 15. Реакция крови и кроветворных органов на ионизирующие излучения.
- 16. Действие ионизирующего излучения на органы пищеварения, сердечнососудистую систему, органы дыхания, органы выделения, на кости, хрящи, мышцы, на органы размножения и потомство животных.
- 17. Значение естественной радиоактивности и малых доз ионизирующих излучений в биологических процессах.
- 18. Лучевые поражения животных.
- 19. Использование радиоактивных изотопов в качестве индикаторов (меченых атомов), для диагностики и лечения животных.
- 20. Стерилизация с помощью ионизирующих излучений.
- 21. Радиометрическая и радиохимическая экспертиза объектов ветеринарного надзора.
- 22. Явления диффузии и его роль в обеспечении жизнедеятельности живых организмов.
- 23. II закон термодинамики для открытых систем. Стационарное состояние биологических объектов.
- 24. Жидкие кристаллы их физические свойства. Жидкие кристаллы в биообъектах.
- 25. Механика сердечнососудистой системы.
- 26. Эффект Доплера и его использование в ультразвуковой диагностике.
- 27. Геомагнитное поле, его влияние на живые организмы.
- 28. Применение магнитного поля в терапевтических целях. Механизм биологического действия магнитного поля.
- 29. Световоды и применение волоконной оптики в диагностике и хирургии.
- 30. Поглощение света. Метод колориметрии. Фотоэлектрический колориметр.
- 31. Принцип работы электронного микроскопа.
- 32. Биолюминисценция. Сверхслабое свечение живых тканей.
- 33. Нерешенные проблемы физики и биофизики.
- 34. Движение. Движение в двух измерениях. Прыжок в длину с разбега.
- 35. Роль физики в решении глобальных проблем.
- 36. Силы в состоянии равновесия. (Системы вытяжки костей. Силы, действующие на мышцы и кости).
- 37. Фундаментальные силы природы.
- 38. Законы сохранения в физике.
- 39. Силы в природе.
- 40. Растения гениальные инженеры в природе.
- 41. Упругие свойства костей и тканей.
- 42. Прочные материалы. Сплавы.
- 43. Усталость и ползучесть материалов.
- 44. Твердые электролиты.
- 45. Металлургия и биология.
- 46. Упругость и вязкость.
- 47. Биоритмия и ее проблемы.
- 48. Природа и ритм.
- 49. Ритмические процессы в живых организмах.
- 50. Космическая биоритмология.
- 51. Физика и музыка.
- 52. О волнах, колебаниях и клетках.
- 53. Колебания и переменные силы.
- 54. Волновая механика.
- 55. Релятивистская механика.
- 56. Акустические средства управления поведением животных.
- 57. Звук. Звук моря.
- 58. Ультразвук в зооинженерной практике.

- 59. Биологическое действие ультразвука.
- 60. Звук и его природа.
- 61. Ультразвук и его применение в сельском хозяйстве.
- 62. Фототермоакустика.
- 63. Воздействие ультразвука на вещество.
- 64. Ультразвуковые фотографии.
- 65. Быстрее звука.
- 66. Проблемы повышения КПД тепловых двигателей и реальные возможности МГД электрогенераторов.
- 67. Невозможность вечного двигателя второго рода.
- 68. Живой организм открытая термодинамическая система.
- 69. Рождение и первые шаги электробиологии.
- 70. Как в клетке возникает разность потенциалов?
- 71. Как возникает нервный импульс?
- 72. Живой телеграф.
- 73. Общение клеток между собой.
- 74. Использование «животного» электричества для решения важнейших задач.
- 75. Как акулы используют закон Ома и теорию вероятностей?
- 76. Борьба с шумами.
- 77. Электрическое оружие и электролокаторы.
- 78. Электрическое хозяйство инфузории.
- 79. Электростанции клеток. Бактерии первые электрики Земли.
- 80. Природа света.
- 81. Взаимодействие света с веществами.
- 82. Люминесцентный анализ.
- 83. Биологическое действие ИК излучения и его применение в с/х животноводстве.
- 84. Биологическое действие У Φ излучения и его применение в с/х животноводстве.
- 85. Биологическое действие лазерного излучения. Применение Лазеров в биологии и медицине.
- 86. Биофизика зрительного восприятия.
- 87. Проблемы развития атомной энергетики.
- 88. Античастицы во Вселенной.
- 89. Снова об атомных станциях.
- 90. Частица, которую надо найти.
- 91. Применение радиоактивных изотопов в сельском хозяйстве.
- 92. Радиоактивность в нашем доме.

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

6.1 Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

	inn oopusoburenbiion nporpus		
Код	Индикатор достижения	Перечень планируемых	Наименование
компе-	компетенции	результатов обучения по	оценочного средства
тенции	компетенции	дисциплине	
ОПК-4	ИД-4 _{ОПК-4} Использует знания основных законов физики необходимых для решения стандартных задач в области профессиональной деятельности	Знать: - современные физические представления об окружающем человека современном мире; - основные теории и фундаментальные понятия физики; законы и явления, границы их	Тест Зачетный билет

	применимости;	
	- назначение и принципы	
	действия важнейших	
	физических приборов.	
	Уметь:	
	- применять различные	
	методы физических	
	измерений и обработки	
	экспериментальных	
	данных;	
	- объяснять основные	
	наблюдаемые природные	
	и техногенные явления и	
	эффекты с позиции	
	фундаментальных	
	физических	
	представлений;	
	- решать задачи из	
	различных разделов	
	физики;	
	- работать с аппаратурой	
	для физических	
	исследований;	
	- выделять конкретное	
	физическое содержание в	
	прикладных задачах	
	профессиональной	
	деятельности.	
	Владеть:	
	- навыком проведения	
	физического	
	эксперимента, в том числе	
	правильно	
	эксплуатировать основные	
	приборы и оборудование в	
	современной физической	
	лаборатории;	
	- навыком обработки и	
	интерпретирования	
	результатов эксперимента;	
	- навыком применения	
	основных методов	
	физико-математического	
	анализа для решения	
	естественнонаучных	
62 Hisawa ayayyayya	задач.	

применимости:

6.2. Шкалы оценивания

Шкала оценивания зачета

— оценка «зачтено» выставляется, если студент обладает достаточно полным знанием курса физики; его ответ представляет грамотное изложение учебного материала по существу; отсутствуют существенные неточности в формулировании понятий и законов; правильно применены теоретические положения, подтвержденные примерами; сделан вывод; оба вопроса освещены полностью или доводятся до логического завершения при наводящих/дополнительных вопросах преподавателя;

— оценка «не зачтено» выставляется, если студент не знает значительную часть материала; допустил существенные ошибки в процессе изложения; не умеет выделить главное и сделать вывод; приводит ошибочные определения; ни один вопрос не рассмотрен до конца, наводящие вопросы не помогают.

Шкала оценивания тестирования на зачете

% выполнения задания	Результат
50 – 100	зачтено
менее 50	не зачтено

6.4. Типовые контрольные задания или иные материалы:

Указаны в приложении 1.

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

- а) основная литература:
- 1. Грабовский, Р. И. Курс физики : учебное пособие для вузов / Р. И. Грабовский. 13-е изд., стер. Санкт-Петербург : Лань, 2022. 608 с. ISBN 978-5-8114-9073-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/184052
 - б) Дополнительная литература:
- 2. Казанцева, А. Б. Сборник вопросов и задач по общей физике. Раздел 5. Молекулярная физика: учебное пособие / А. Б. Казанцева, Н. В. Соина, Г. Н. Гольцман. Москва: Прометей, 2012. 144 с. ISBN 978-5-7042-2340-5. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/18616.html
- 3. Конкин, Б. Б. Физика. Часть І. Механика. Молекулярная физика и термодинамика : учебное пособие / Б. Б. Конкин, В. П. Сафронов, Я. Б. Константинова. Ростов-на-Дону : Северо-Кавказский филиал Московского технического университета связи и информатики, 2011. 61 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/61320.html
- 4. Молекулярная физика и основы термодинамики : учебное пособие / составители О. М. Алыкова. Астрахань : Астраханский государственный университет, Издательский дом «Астраханский университет», 2019. 223 с. ISBN 978-5-9926-1058-1. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/99503.html
- 5. Сборник вопросов и задач по общей физике. Раздел 3. Оптика. Раздел 4. Квантовая физика / Н. В. Соина, А. Б. Казанцева, И. А. Васильева, Г. Н. Гольцман. Москва : Прометей, 2013. 194 с. ISBN 978-5-7042-2414-3. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/24021.html.

8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"

<u>www.all-fizika.com</u> - Все о физике. Словари, информационный материалы. <u>www.ph4s.ru</u> - Физика, химия, математика студентам и школьникам. Образовательный проект А.М.Варгина. Учебники и другая литература. www.fizika.ru - Физика. Ru. Сайт для преподавателей физики, учащихся и их родителей.

9. Методические указания для обучающихся по освоению дисциплины

- 1. Физика: лабораторный практикум. / Сост. Е. А. Проскурякова. Тюмень: ГАУ Северного Зауралья, 2017. 144 с.
- 2. Белановский А.С., Физика с основами биофизики, методические указания по изучению дисциплины и задания для самостоятельной работы заочной формы обучения по направлениям: зоотехния, ветеринария, ветеринарно-санитарная экспертиза, биология. Тюмень: ТГСХА, 2012. 105 с.
- 3. Проскурякова, Е. А. Физика элементарных частиц: учеб.пособие для с.-х. вузов/ Е. А. Проскурякова. Тюмень: ГАУСЗ, 2013.- 104 с.

10. Перечень информационных технологий

Для выполнения лабораторных работ студентам рекомендуется использовать программу Microsoft Office (электронные таблицы Microsoft Excel).

11. Материально-техническое обеспечение дисциплины

- 1-23 Лаборатория оптики: Установка для измерения длины волны. дифракционная решетка, электрическая лампа, микроскоп, стеклянные пластины, микрометр, вакуумный фотоэлемент, эталонная лампочка, оптическая скамья, микроамперметр, вольтметр, потенциометр, соединительные провода.
- 1-24 Лаборатория электростатики и электродинамики: амперметры, вольтметры различных видов, потенциометр, вольтметр, амперметр, сопротивление нагрузки (реостат), ключ, источник питания 200 В, пантограф, реостат, ключ, зонд, источник питания 50 В, термистор, магазин сопротивления, термометр, гальванометр, ключ, потенциометр, электрическая плитка, тангенс гальванометр, потенциометр, переключатель, компас, источник тока 50 В.
- 1-18 Лаборатория механики и молекулярной физики: Приборы по определению плотности твёрдого тела (авторское исполнение), по изучению колебательного движения (авторское исполнение), по изучению вращательного движения (авторское исполнение), по изучению вращательного движения (авторское исполнение), по определению явления вязкости жидкости, коэффициента поверхностного натяжения жидкости (авторское исполнение).

12. Особенности освоения дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

- В целях освоения учебной программы дисциплины инвалидами и лицами с ограниченными возможностями здоровья обеспечивается:
- для инвалидов и лиц с ограниченными возможностями здоровья по зрению: размещение в доступных для обучающихся, являющихся слепыми или слабовидящими, местах и в адаптированной форме справочной информации о расписании учебных занятий; присутствие ассистента, оказывающего обучающемуся необходимую

помощь; выпуск альтернативных форматов методических материалов (крупный шрифт или аудиофайлы), использование версии сайта для слабовидящих ЭБС IPR BOOKS и специального мобильного приложения IPR BOOKS WV-Reader (программы невизуального доступа к информации, предназначенной для мобильных устройств, работающих на операционной системе Android и iOS, которая не требует специально

обученного ассистента, т.к. люди с OB3 по зрению работают со своим устройством привычным способом, используя специальные штатные программы для незрячих людей, с которыми IPR BOOKS WV-Reader имеет полную совместимость);

- для инвалидов и лиц с ограниченными возможностями здоровья по слуху: надлежащими звуковыми средствами воспроизведение информации;
- для инвалидов и лиц с ограниченными возможностями здоровья, имеющих нарушения опорно-двигательного аппарата: возможность беспрепятственного доступа обучающихся в учебные помещения, туалетные комнаты и другие помещения кафедры, а также пребывание в указанных помещениях.

Образование обучающихся с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах или в отдельных организациях.

Приложение 1

Министерство сельского хозяйства Российской Федерации ФГБОУ ВО Государственный аграрный университет Северного Зауралья Инженерно-технологический институт Кафедра энергообеспечения сельского хозяйства

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине Физика

для направления подготовки 36.03.01 Ветеринарно-санитарная экспертиза профиль «Ветеринарно-санитарная экспертиза»

Уровень высшего образования - бакалавриат

Разработчик: доцент С.М. Корнев

Утверждено на заседании кафедры протокол №11 от «07» июля 2022г.

И.о. заведующего кафедрой

А.С. Кизуров

КОНТРОЛЬНЫЕ ЗАДАНИЯ И ИНЫЕ МАТЕРИАЛЫ ОЦЕНКИ

знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения дисциплины

ФИЗИКА

ОПК-4 - Способен обосновывать и реализовывать в профессиональной деятельности современные технологии с использованием приборноинструментальной базы и использовать основные естественные, биологические и профессиональные понятия, а также методы при решении общепрофессиональных задач

Вопросы к зачету

- 1) Механическое движение. Виды механического движения. Средняя, мгновенная скорость поступательного движения.
- 2) Среднее, мгновенное ускорение поступательного движения. Нормальное, тангенциальное, полное ускорение.
- 3) Среднее, мгновенное угловое ускорение. Связь углового ускорения с тангенциальным.
- 4) Средняя, мгновенная угловая скорость. Вращательная скорость.
- 5) 1 й закон Ньютона. 2 й закон Ньютона (в обычном и дифференциальном виде).
- 6) Импульс. Закон сохранения импульсов.
- 7) Момент силы (в векторном и скалярном виде). Плечо силы.
- 8) Момент инерции (для элементарной массы). От чего зависит момент инерции твердого тела.
- 9) Основное уравнение динамики вращательного движения. Провести аналогию данного уравнения со 2 м законом Ньютона.
- 10) Колебательное движение. Уравнение скорости, ускорения, координаты незатухающих гармонических колебаний. Амплитуда, период, частота колебаний.
- 11) Вынужденные колебания. Резонанс.
- 12) Работа (элементарная, полная). Мощность (средняя, мгновенная). Энергия. Виды энергии (кинетическая, потенциальная).
- 13) Полная механическая энергия. Энергия вращающегося тела. Закон сохранения механической энергии.
- 14) Механические волны. Виды волн: поперечные, продольные. Уравнение плоской механической волны.
- 15) Звуковые волны. Интенсивность звука. Уровень интенсивности. Закон Вебера Фехнера. Звуковое давление.
- 16) Ультразвук. Инфразвук. Эффект Доплера. Формула частоты Доплера. Примеры применения эффекта Доплера в медицине и биологии.
- 17) Основные положения МКТ. Степень свободы молекул.
- 18) Основное уравнение МКТ. Средняя кинетическая энергия молекул. Абсолютная шкала температур. Абсолютный ноль.
- 19) Идеальный газ. Уравнение Менделеева Клайперона. Реальный газ. Уравнение Ван дер Ваальса. Сжижение газа.

- 20) Явление переноса. Уравнения явлений переноса: диффузии, теплопроводности, внутреннего трения.
- 21) Термодинамические параметры. Теплота. Работа при расширении газа. Внутренняя энергия.
- 22) 1-й, 2-й законы термодинамики. Обратимые и необратимые процессы. Тепловая машина.
- 23) Электростатическое поле, его напряженность. Поток напряженности, теорема Гаусса.
- 24) Работа перемещения электрического заряда в силовое электростатическое поле. Потенциал. Напряженность поля как градиент потенциала.
- 25) Проводники в силовом электростатическом поле. Электростатическая защита. Электростатические явления.
- 26) Диэлектрики в силовом электростатическом поле. Поляризация диэлектриков, виды поляризации. Диэлектрическая проницаемость.
- 27) Электроемкость проводника. Конденсаторы. Энергия СЭП. Живой организм в силовом электростатическом поле.
- 28) Электрический ток в металлах. Закон Ома (в обычном и дифференциальном виде). Тепловое действие тока. Электронагревательные устройства.
- 29) Полупроводник и его свойства. Электронная и дырочная, собственная и примесная проводимости полупроводника. Зависимость сопротивления проводника от температуры. Термистор.
- 30) Полупроводниковый диод. Запирающий слой в полупроводниках и его выпрямляющее действие.
- 31) Электрический ток в газах. Вольтамперная характеристика газового разряда. Аэрионы и их применение.
- 32) Постоянное магнитное поле. Магнитное взаимодействие проводников с током. Закон Ампера. Индукция ПМП. Закон Био Савара Лапласа.
- 33) Вещество в магнитном поле. Магнитная проницаемость. Диамагнитные, парамагнитные, ферромагнитные вещества. Магнитное поле Земли и его действие на биологические объекты.
- 34) Электромагнитная индукция. Самоиндукция. Опыты Фарадея. Индуктивность.
- 35) Отражение и преломление света. Полное отражение и использование этого явления в оптических приборах. Световоды.
- 36) Энергетические фотометрические величины и единицы их измерения. Кривая видности.
- 37) Световые фотометрические величины и единицы их измерений.
- 38) Интерференция света. Условия усиления и ослабления световой волны.
- 39) Дифракция света. Принцип Гюйгенса Френеля. Дифракционная решетка. Дифракционный спектр.

- 40) Дисперсия света. Спектры. Спектральный анализ.
- 41) Поглощение света. Законы Бугера и Бера. Биологическое значение солнечного света. Фотохимические и фотобиологические реакции.
- 42) Ультрафиолетовое и инфракрасное излучения и их биологическое действие.
- 43) Природа теплового излучения. Абсолютно черное тело. Закон Кирхгофа. Законы Стефана Больцмана и Вина.
- 44) Квантовый механизм излучения (поглощения) света. Формула Планка. Фотоны. Фотоэффект. Уравнение Эйнштейна для фотоэффекта.
- 45) Планетарная модель атом. Постулаты бора. Спин электрона. Принцип Паули.
- 46) Виды люминесценции. Правило Стокса. Закон Вавилова.
- 47) Рентгеновское излучение, его свойства. Биологическое действие рентгеновского излучения.

Процедура оценивания зачета

Зачет проходит в форме тестирования с использованием ЭИОС Moodle в соответствии с графиком промежуточной аттестации. Обучающийся допускается к промежуточной аттестации (зачету) по дисциплине при условии посещения занятий и успешного выполнения текущего контроля в течение семестра, которое включает:

- -положительные оценки за промежуточные контрольные работы;
- успешное собеседование по темам, выносимым на самостоятельное изучение;

В противном случае обучающийся не допускается к прохождению тестовых заданий, до полной ликвидации всех задолженностей.

Тест в системе Moodle включает 30 вопросов, в случайном порядке выбранных из банка вопросов. Обучающемуся предоставляется 2 попытки продолжительностью 45 минут каждая

Критерии оценки зачета

Оценка «Зачтено/Не зачтено» выставляется системой автоматически согласно шкале оценивания тестирования на зачете.

Оценка «Зачтено» выставляется, если наилучшая попытка решения тестирования характеризуется результатом не ниже 50%;

Оценка «Не зачтено» выставляется, если результат наилучшей попытки решения тестирования характеризуется результатов менее 50%.

Вопросы для собеседования по темам, выносимым на самостоятельное обучение

- 1. Момент сил относительно неподвижной оси.
- **2.** Условия равновесия тел, имеющих ось вращения. Пара сил. Центр тяжести твердого тела.
- 3. Применение условия равновесия для вычисления центра тяжести.
- 4. Статические системы в опорно-двигательном аппарате животных.
- 5. Явления переноса. Законы Фика и Фурье.
- 6. Явления переноса в биологических системах.
- 7. Виды теплообмена. Терморегуляция организма и теплообмен в с/х.
- 8. Уравнение Ван-дер-Ваальса.
- 9. Кристаллическое состояние вещества.

- 10. Сжижение газов.
- 11. Обратимые и необратимые процессы, 2-е начало термодинамики.
- 12. Принцип действия тепловой машины.
- 13. Цикл Карно и его КПД.
- 14. Тепловые машины и холодильные установки в с/х.
- 15. Понятие энтропии. Закон не убывания энтропии.
- 16. Понятие об открытых термодинамических системах. Живой организм как открытая термодинамическая система.
- 17. Первое начало термодинамики в биологии.
- 18. Превращение энергии в биологических системах и энергетический баланс живого организма.
- **19.** Теплопродукция. Аккумулирование энергии в молекулах АТФ. Перенос тепла в живых организмах.
- 20. 2-е начало термодинамики в биологии. Формула Пригожина.
- 21. КПД мышцы.
- 22. Электрические явления в биологических системах.
- 23. Самостоятельная и несамостоятельная проводимость газов.
- 24. Вольтамперная характеристика газового разряда. Законы электролиза.
- 25. Порог разряжения в тканях. Прохождение постоянного тока через живые ткани.
- 26. Действие постоянного тока на организм.
- 27. Гальванизация, электрофорез, электрод. потенциал.
- 28. Мембранный потенциал. Транспорт веществ через клеточные мембраны. Осмос.
- 29. Понятие о калиево натриевом насосе. Биопотенциалы.
- 30. Электромагнитная индукция. Опыты Фарадея. Явления самоиндукции.
- 31. Энергия магнитного поля. Действие электромагнитного поля на живой организм.
- 32. Применение ЭМП в физиотерапии.
- 33. Поляризация света, поляризованный и естественный свет.
- 34. Дисперсия света. Спектры и их типы. Спектральный анализ.
- 35. УФ и ИК излучение, их свойства и методы наблюдения.
- 36. Биологическое действие УФ и ИК излучения.
- 37. Применение УФ излучения для с/х производства.
- 38. Природа теплового излучения. Абсолютно черное тело.
- 39. Закон Стефана Больцмана, Вина. Тепловое излучение тела животных.
- 40. Различные виды люминесценции. Правило Стокса.
- 41. Закон Вавилова. Люминесцентный анализ.
- 42. Получение рентгеновского излучения, его свойства.
- 43. Рентгенодиагностика.
- 44. Лазеры. Физические и биологические свойства лазерного излучения.

Процедура оценивания собеседования

Собеседование проводится в форме индивидуального опроса для определения уровня освоенности обучающимися тем, выносимых на самостоятельное изучение. Как правило, собеседование проходит на консультации. Преподаватель заранее предупреждает обучающегося о сроках проведения собеседования, требованиях к подготовке материалов, знакомит с вопросами к собеседованию.

Ответ на вопрос считается правильным, если по своему содержанию полностью соответствует заданному вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а его изложение грамотное.

Критерии оценки собеседования

По результатам собеседования обучающемуся выставляется оценка:

«Зачтено», если обучающийся ответил на все предложенные вопросы, показав хорошие знания по изученной теме, продемонстрировал владение материалом по теоретическим вопросам и практическим заданиям и/или допустил несущественные неточности/ошибки при ответе;

«**Не зачтено**», если обучающийся ответил не на все предложенные вопросы; продемонстрировал неполное владение материалом по теоретическим вопросам и практическим заданиям и допустил несколько существенных ошибок при ответе

Комплект заданий для контрольной работы

(заочная форма обучения)

Обучающийся выбирает номера заданий своего варианта согласно таблице 1

Таблица 1. Варианты контрольных заданий

Последняя	Предпоследняя цифра № зачетной книжки	
цифра №	0, четная	нечетная
зачетной		
книжки		
0	1, 25, 41, 61, 85, 101, 121	5, 21, 44, 64, 81, 104, 126
1	2, 26, 42, 62, 86, 102, 122	6, 22, 45, 65, 82, 105, 127
2	3, 27, 43, 63, 87, 103, 123	7, 23, 46, 66, 83, 106, 128
3	4, 28, 47, 67, 88, 108, 124	8, 24, 50, 71, 84, 107, 129
4	10, 29, 48, 68, 93,109, 125	9, 30, 51, 72, 89, 110, 130
5	11, 33, 49, 69, 94, 113, 131	13, 31, 52, 73, 90, 111, 134
6	12, 34, 53, 70, 95, 114, 132	14, 32, 54, 74, 91, 112, 135
7	17, 35, 56, 76, 96, 115, 133	15, 37, 55, 75, 92, 116, 136
8	18, 36, 58, 77, 98, 118, 137	16, 38, 57, 78, 99, 117, 139
9	19, 39, 59, 80, 97, 119, 138	20, 40, 60, 79, 100, 120, 140

КОНТРОЛЬНЫЕ ЗАДАНИЯ

Механика и биомеханика (колебания и волны). Акустика. Гидродинамика и гемодинамика.

- 1. Косилка измельчитель предназначена для скашивания травы и одновременного измельчения кормов для скота. Зависимость угла поворота барабана косилки КС -1 от времени дается уравнением: $\phi = A + Bt + Ct^3$, где B = 0.6 рад/с, C = 0.25 рад/с 3 . Найти угловую скорость вращения барабана на линейную скорость точек на его поверхности через 10 с. от начала вращения. Диаметр барабана 0.5 м.
- 2. Барабан молотилки вращается так, что зависимость числа его оборотов от времени задается уравнением: $v = A + Bt^2$, где $A = 3 c^{-1}$, $B = 1,5 c^{-3}$. Сколько оборотов сделает барабан через 5 с от начала вращения?
- 3. Вал зерномолотилки MCA -100 начал вращаться равноускоренно с угловым ускорением 80 рад/с². Какой частоты вращения достигнет вал через 12 полных оборотов?
- 4. Барабан косилки измельчителя КИР 1,5 достигает рабочей частоты вращения в 1500 об/мин через 2 мин от начала движения. Вычислить угловое ускорение барабана, тангенциальное и полное ускорение точек на его поверхности. Диаметр барабана 570 мм.
- 5. Барабан сепаратора «Урал 3», момент инерции которого 10^4 кг · м ², вращается с частотой 7800 об/мин. За сколько времени остановится барабан, если к нему приложить тормозящий момент $6.28 \cdot 10^4~$ H· м?

- 6. Рабочее колесо вентилятора, обеспечивающего воздухообмен в коровнике, вращается с частотой об/мин. Диаметр колеса 40 см и его масса 6 кг. Считая колесо сплошным цилиндром, вычислить его кинетическую энергию.
- 7. Линейная скорость вентилятора веялки на его периферии должна быть 9 м/с. С каким угловым ускорением вращается вентилятор веялки, если его диаметр 1,2 м. и он достигает этой скорости через 3 мин? Сколько оборотов сделает за это время вентилятор?
- 8. Для изучения воздействия ускорений на организм животных кролик массой 2,5 кг был посажен в центр горизонтальной платформы диаметром 1,5 м и массой 12 кг. Платформу привели во вращение так, что она делает 15 об/мин. Как изменится частота вращения платформы, если кролик перейдёт от центра к её краю? Во время перехода кролика внешние силы на платформу не действовали.
- 9. Момент инерции барабана сепаратора «Урал-3» равен 9150 кг · м². Барабан вращается от электромотора с частотой 9000 об/мин. При кратковременном отключении тока частота вращения снизилась до 3000 об/мин. Какую работу совершили за это время силы трения?
- 10. Измельчительный барабан косилки измельчителя КУФ 1,8 вращается с частотой 960 об/мин. Вычислить кинетическую энергию барабана, считая его полым цилиндром, если масса его 1300 кг и диаметр 600 мм.
- 11. Интенсивность ультразвука, используемого для лечения заболеваний суставов у крупного рогатого скота, составляет 1,2 ·10 Вт/м. Какое количество энергии проходит в тело животного при длительности процедуры 10 мин, если площадь вибратора 12 см²?
- 12. Количество энергии, передаваемой ультразвуковой волной телу животного при лечении периартрита, за один сеанс должно быть 650 Дж при интенсивности ультразвука $8000 \, \mathrm{Bt/m}$. Сколько времени должен проводить сеанс, если площадь вибратора $15 \, \mathrm{cm}^2$?
- 13. Площадь барабанной перепонки человеческого уха 0,65 см. Вычислить, какая энергия протекает через барабанную перепонку за 1 мин при постоянном шуме в 80 дБ.
- 14. Шум в помещении птицефабрики днём достигает 95 дБ, а ночью снижается до 65 дБ. Во сколько раз интенсивность звука днём больше, чем ночью?
- 15. Шум на улице достигает уровня 80 дБ. Такой шум приводит к ухудшению физиологического состояния коров и , в частности , к падению молочной продуктивности. Во сколько раз надо уменьшить интенсивность шума в коровнике (за счёт звукоизоляции) по сравнению с улицей, чтобы уровень шума в нём был не более 60 дБ?
- 16. На сколько децибел увеличится шум в помещении птицефабрики, если интенсивность звука возрастёт: а) в 2000 раз б) в 20000 раз?
- 17. Работающая в помещении животноводческого комплекса электродойка создаёт уровень шума в 75 дБ. Определить уровень шума, когда в помещении будут включены сразу 3 таких установки.
- 18. Для лечения ряда заболеваний крупного рогатого скота применяется ультразвук с частотой 880 кГц. Показатель поглощения ультразвука этой частоты в мышечных тканях 0,2 см. Какова будет интенсивность ультразвука на глубине 5 см, если на поверхности ткани интенсивность его равна 0,6 Вт/м?
- 19.Показатель поглощения ультра звука в воде (при частоте 100 кГц) равен 2,5 · 20 см. На каком расстоянии от источника интенсивность ультразвука уменьшится вдвое?
- 20. При прохождении через перегородку из фанеры толщиной 3 мм интенсивность звука, снижается в 10 раз. Какова будет интенсивность звука, прошедшего через фанерную перегородку, если равна 10 Вт/м.
- 21. В кипятильнике «Титан» уровень воды в баке достигает 0,6 м. С какой скоростью вытекает вода из крана, расположенного у дна бака кипятильника? Считать, что диаметр отверстия крана во много раз меньше диаметра бака.
- 22. Молоко вытекает из крана передвижной молочной цистерне МВЦ-600 со скоростью 4,78 м/с. До какого уровня заполнена цистерна?

- 23. Молоко течёт по молокопроводу диаметром 38 мм (установка УДС-1). На одном участке диаметр трубы уменьшился до 30 мм. На сколько изменится давление молока в этом участке трубы по сравнению с остальной частью трубы. Скорость течения в основной части трубы 2 м/с.
- 24. Кровь в аппарате искусственного кровообращения движется по шлангу, через сечение которого проходит ежеминутно 5 л крови. Для определения давления в двух разных участках шланга в них вставили манометрические трубки. Определить разность уровней крови в трубках ,если они вставлены в участки шланга с диаметром 30 мм и 20 мм.
- 25. Установка НЩ-50 предназначена для перекачки жидкого навоза от животноводческих ферм на поля фильтрации. В час такая установка перекачивает 70 м навозной жижи. Какова работа, идущая на преодоление трения в горизонтальной трубе, если её конец сообщается с атмосферой, а в её начальном участке давление равно 150 кПа?
- 26. В молокопроводе, подающем молоко в автомобильную цистерну, создаётся пониженное давление в 39 кПа. Каково давление на другом конце трубы, если при перемещении 1000 л молока на преодоление трения затрачивается энергия 60 кДж?
- 27. Какой объём крови протекает через кровеносный сосуд длиной 50 мм и диаметром 3 мм за 1 минуту, если на него концах имеется разность давлений в 2 мм рт. ст.?
- 28.Определение скорости оседания эритроцитов (СОЭ) имеет большое диагностическое значение. Так, при воспалительных процессах в организме животных СОЭ обусловлена слипанием эритроцитов в комочки большего диаметра. Считая их сферическими, определить диаметр комочков в крови лошади, если СОЭ равна 64 мм/час.
- 29.Определить плотность оседания эритроцитов в крови свиньи, если скорость оседания их в крови (СОЭ) равна 8 мм/час. Считать, что эритроциты имеют форму шарика диаметром 5 мкм (в действительности они имеют форму двояковыпуклой линзы).
- 30.В лабораторной установке касторовое масло подаётся по трубке длиной 35 см и диаметром 4 мм. Какова должна быть разность давления на концах трубки, чтобы за 5 мин через нее протекло 0,5 литра масла?

Молекулярная физика

- 31.В ветеринарной терапии некоторые лекарственные вещества применяют в виде аэрозолей. Вычислить среднюю квадратичную скорость частичек аэрозоля диаметром 10^{-6} см и плотностью $1,5^{\circ}10^{-3}$ кг/м 3 при 27^{-0} С
- 32Температура крови у лошади в норме 37 С. При заболевании среднюю квадратичную скорость молекул, входящих в состав плазмы крови, увеличилась на 0,5 %. Какова стала температура крови у лошади?
- 33. При температуре 10^{-0} С в баллоне находится $1,5*10^{24}$ молекул. Определить кинетическую энергию поступательного движения всех молекул в баллоне.
- 34. Кинетическая энергия поступательного движения всех молекул кислорода, выделенного в процессе фотосинтеза за час, равна 200 Дж. Средняя квадратичная скорость этих молекул 470 м/с. Какова, масса выделенного растениями кислорода?
- 35.Сколько степеней свободы имеет молекула, обладающая кинетической энергией $9.7*10^{-21}$ Дж при 7^{0} С?
- 36.Трехатомный газ массой 1,5 кг находится под давлением 5 атм. и имеет плотность 6 кг/м 3 . Найти энергию теплового движения молекул газа при этих условиях.
- 37.Удельные теплоемкости газа при постоянном объёме и при постоянном давлении равны соответственно 649 и 912 Дж/кг*К. Определить молярную массу этого газа и число степеней свободы его молекул.
- 38. Найти импульс молекулы азота при 27^0 С.Скорость молекулы считать равной средней квадратичной скорости.
- 39.~100~г воды испарили и полученный пар нагрели до $120^{0}~$ С. Найти полную кинетическую энергию поступательного движения молекул воды, находящихся в этом паре.

- 40. Вычислить удельные теплоемкости при постоянном давлении и при постоянном объёме для газа,молярная масса которого 0,044 кг/ моль, а отношение теплоёмкостей равно 1,33.
- 41. В автоклаве объёмом 8 л находится 0,1 кг воды ,найти давление водяных паров в автоклаве при температуре $200\,^{0}$ С, когда вся вода в нем превратилась в пар.
- 42. Сколько молекул углекислого газа содержится в выдыхаемом собакой воздухе, если объём при одном выдохе равен 300 мл? Температура воздуха 37 0 C и давление 780 мм рт.ст.
- 43. В баллоне объёмом 35 л находится кислород под давлением 20 атм и при 27⁰ С.Для поддержания дыхания больного было взято из баллона 8 г кислорода,после чего температура в баллоне понизилась до 23⁰ С.Определить давление кислорода, оставшегося в баллоне.
- 44. В закрытом баллоне объёмом 12 л находится воздух при давлении $2^{\circ}10^{\circ}$ Па.Какое количество тепла надо сообщить воздуху,чтобы повысить давление в сосуде в 3 раза? 45. 2 кг кислорода находится под давлением $5^{\circ}10^{\circ}$ Па. и имеет плотность 3 кг/м 3 .Найти

энергию теплового движения молекул газа при этих условиях.

Объясните разницу в ответах.

- 46. Какое число молекул аммиака занимают объем 50 см³ при давлении 0,1 атм и при
- температуре 27 °C? Какой энергией теплового движения обладают эти молекулы? 47. Определить давление углекислого газа массой 44 г при 10 °C в объеме 2 л. Вычисление провести: а) по уравнению Менделеева Клапейрона; б) по уравнению Ван –дер- Ваальса.
- 48. Один моль азота и водяного пара занимает объем 0.1 л при температуре 0 °C. Вычислить давления этих газов по уравнению Ван —дер- Ваальса. Чем объясняется разница в ответах?
- 49. За один выдох корова выделяет 8 л воздуха, в котором содержится 2% водяных паров. Частота дыхания коровы 25 раз в минуту. Какова будет масса водяных паров в закрытом помещении, в котором 2 часа содержались 5 коров? Атмосферное давление 760 мм. рт. ст., температура воздуха в коровнике 20 °C.
- 50. Вычислить массу и количество молей водяного пара в закрытом помещении коровника объемом $10~000~\text{m}^3$, если парциальное давление этого пара $1200~\Pi a$, а температура воздуха $10~^{\circ}\mathrm{C}$.
- 51. Коллагеновое волокно длиной 8 мм под действием приложенной к нему силы удлинилось на 1 мм. Какое напряжение возникает при этом волокне.
- 52. Малоберцовая кость свиньи имеет длину 20 см. Ее наружный диаметр 35 мм и толщина стенки 3 мм. К кости приложили осевую нагрузку 8 кН. Найти удлинение кости.
- 53. Внешний диаметр локтевой кости 15 мм, предел прочности кости 10^8 Па. Какую силу надо приложить при осевой нагрузке к кости, чтобы произошел разрыв. Толщина стенки кости 3 мм.
- 54. Операционный стол стоит на четырех стальных ножках диаметром по 2 см. Высота стола 80 см. На сколько уменьшится высота ножек стола, когда на него положат животное массой 200 кг?
- 55. Дозировка хлороформа для общей анастезии производится путем подсчета капель, вытекающих из вертикальной трубки диаметром 1,8 мм. Какова масса хлороформа, если было подсчитано 850 капель? Считать диаметр шейки капли в момент отрыва равным 0,8 диаметра трубки.
- 56. На какую высоту поднимается вода в почве, если диаметр почвенного капилляра 800 мкм?
- 57. Определить диаметр почвенного капилляра, если высота поднятия воды в нем равна 125 мм.
- 58. Во сколько раз высота подъема воды в стеблях риса со средним диаметром капилляров 0,02 сс больше, чем в почве с капиллярами диаметром 300 мкм?

- 59. Из капиллярной трубки по каплям вытекает глицерин. Диаметр шейки капли в момент отрыва равен 3 мм. Определить коэффициент поверхностного натяжения глицерина, если масса 75 капель 429 г.
- 60. Определить КПН мочи, если она поднялась по капилляру диаметром 200 мкм на высоту 138 мм.

Термодинамика и биоэнергетика

- 61. При входе в легкие овцы попадает 0,5 л воздуха. На сколько изменится внутренняя энергия воздуха, если его температура была -10 $^{\circ}$ C, а температура внутри легких +37 $^{\circ}$ C? Атмосферное давление 780 мм. рт. ст..
- 62. Какое количество теплоты затрачивается на нагревание воздуха, поступающего в легкие коровы за 1 час, если за один вдох в легкие поступает 6 л воздуха при 0 °C? Температура легких коровы 38 °C и частота дыхания 20 раз в минуту. Атмосферное давление 740мм. рт. ст..
- 63. Вычислить работу, совершаемую коровой за один вдох, считая плевральное давление за время вдоха постоянным и равным 30 мм. рт. ст.. Объем дыхательного воздуха у коровы 6,5 л. Какова мощность дыхательного процесса, если частота дыхания коровы равна 20 раз в минуту?
- 64. На сколько возрастает мощность дыхания лошади при беге, если объем дыхательного воздуха при этом возрастает с 5 л в покое до 12 л при беге, а частота дыхания соответственно увеличивается от 8 до 12 раз в минуту. Плевральное давление считать постоянным и равным 35 мм. рт. ст.
- 65. Для лечения хронического заболевания сустава на бедро коровы накладывается озокеритовая аппликация, масса озокерита в которой 6,5 кг, температура 75 °C. Какое количество теплоты отдаст озокерит при остывании до температуры тела коровы (37 °C), если считать, что благодаря наружной изоляции 80 % теплового потока направлено к телу коровы?
- 66. В боксе с температурой 61 °C было пролито 2,5 г хлороформа. Какое количество теплоты потрачено на испарение хлороформа, если его начальная температура тела 18 °C?
- 67. Определить количество теплоты, проходящей через 1 $\rm m^2$ поверхности тела теленка в течение суток, если толщина жировой клетчатки 10 мм, внутренняя температура тела 39 $\rm ^{o}C$, а на поверхности 30 $\rm ^{o}C$
- 68. Определить коэффициент теплопроводности зерна в элеваторе, если через слой его толщиной 1,1 м и площадью 1,5 м 2 в течение 6 минут проходит 300 Дж теплоты. Разность температур между нижней и верхней частями слоя равна 5 °C.
- 69. Определить увеличение энтропии, обусловленное выделением тепла лошадью за один час, если теплопродукция тела лошади равна 0,547 Дж/кг * с, масса лошади 450 кг и температура тела равна 37 $^{\circ}$ С.
- 70. Вычислить увеличение энтропии, обусловленное потоотделение человека, если за час человек в среднем выделяет 20 мл пота. Температура тела 37 °C.

Электричество и магнетизм

- 71. Для лечения гальваническим током ревматизма на тазобедренную область коровы накладывают электроды с гидрофильной прокладкой, площадь каждого из которых равна 150 см². Необходимая для лечения плотность тока должна быть 0,3 мА/см². Какой ток пройдет при этом через животное? Какое количество электричества пройдет через него, если время процедуры 30 мин?
- 72. При заболевании маститом корове необходимо ввести в вымя методом лечебного электрофореза 20 мг йода. Для этого гидрофильная прокладка под катодом была смочена раствором йодистого калия. Через прокладку площадью 100 см² пропускали ток плотностью 0,15 мА/см². Сколько времени необходимо пропускать ток для введения необходимого количества йода?
- 73. При лечении животного методом гальванизации через него в течение 0,5 мин. пропускали ток плотностью 0,2мA/см 2 . Площадь электрода 120 см 2 . Какое количество

- электричества положительных и отрицательных ионов прошло через тело животного, если считать ионы одновалентными.
- 74. Аппарат для гальванизации АГН-5 создает плотность тока 0.5 мА/см². Какое количество электричества проходит через тело коровы, если наложенные на нее электроды имеют площадь по 0.01 дм². И процесс гальванизации длится 20 мин?. Каково сопротивление участка тела коровы, если к электродам приложено напряжение 25 В?.
- 74. Аппарат для гальванизации АГН-5 создает плотность тока 0.5 мА/см². Какое количество электричества проходит через тело коровы, если наложенные на нее электроды имеют площадь по 0.01 дм² и процесс гальванизации длится 20 мин? Каково сопротивление участка тела коровы, если к электродам приложено напряжение 25 В?
- 75. Источник УФ облучения с горелкой ПРК-2 потребляет ток 3,7 А при напряжении 220В. Какова мощность излучателя? Какова стоимость работы излучателя в течение года в физиотерапевтическом кабинете, если в течении рабочего дня облучается 25 животных по 15 мин каждое? Стоимость $1 \kappa B \tau^* \tau$ электроэнергии 4 копейки. Число рабочих дней в году 305.
- 76. Применяемый на животноводческих фермах электронагреватель ВЭП-600 позволяет нагревать $100~\rm kr$ воды от 10° до 35° за $18~\rm muh$. Определить мощность нагревателя и потребляемый им ток, если он подключен к сети с напряжением $220~\rm B$.
- 77. Количество теплоты, которое должен получить один цыпленок при брудерном содержании, равно в среднем 7 кДж/час. Брудер Б-4 применяется для обогрева 600 цыплят. Нагревательный элемент брудера выполнен из нихромовой проволоки сечением 0,5мм² и подсоединен к сети с напряжением 220 В. Вычислить, какой длины проволоку необходимо взять для изготовления нагревательного элемента. Удельное сопротивление нихрома 10⁻⁵ Ом*м.
- 78. Термопарой медь констан с сопротивлением 6 Ом измеряют температуру физиологического раствора. Один спай термопары 43 мкВ/град. Сила тока в гальванометре, сопротивление которого 100 Ом, равна 15 мкА. Определить температуру раствора.
- 79. один спай термопары был приложен к вымени, а другой к животу. Какова разность температур между этими точками тела, если стрелка гальванометра с ценой деления 0,05мекА/дел отклонилась на 48 делений? Внутреннее сопротивление гальванометра 40 Ом, добавочное сопротивление 100 Ом. Сопротивление медно-константанового элемента 3 Ом. Постоянная термопары 4,3*10⁻⁸ В/град.
- 80. Термопара железо-констан с удельной э. д. с. 5*10⁻⁵ В/град погружается одним спаем в почву, а спай находится в воздухе, температура которого 20*С. Гальванометр, подключенный к термопаре, показывает ток 0,3 мкА. Сопротивление цепи равно 1500 Ом. Определить температуру почвы.
- 81. При каком напряжении по обмотке дросселя, имеющей активное сопротивление 50 Ом и индуктивность 0,2 Г, пойдёт ток силой 3 А, если частота тока 50 Гц?
- 82. Чему равен сдвиг фаз между током и напряжением в катушке индуктивностью $50 \text{ м}\Gamma$ и активным сопротивлением 12 Ом, если частота тока $50 \text{ }\Gamma$ ц?
- 83. Обмотка дросселя имеет активное сопротивление 40 Ом. При напряжении на обмотке 220 В по ней идёт ток в 5 А. Определить индуктивность дросселя, если частота тока 50 Гц.
- 84. В цепь переменного тока включены последовательно активное сопротивление 20 Ом, дроссель с индуктивностью 50 м Γ и конденсатор с ёмкостью 0,5 мк Φ . При какой частоте тока индуктивное сопротивление цепи равно её ёмкостному сопротивлению? Чему равно при этом полное сопротивление цепи?
- 85. Объём жировой ткани, подвергающейся УВЧ-терапии, имеет площадь 8 см² и толщину 3 см. Каково его активное сопротивление? Вычислить ёмкостное сопротивление этого участка ткани, если его электроёмкость 8500 пФ и частота поля, генерируемого аппаратом УВЧ-терапии, 4,69 МГц.

- 86. В кювете находятся два плоских электрода, площадь каждого из которых 4 см². В кювету помещается яичный белок и через него пропускают переменный ток. Определить ёмкостное сопротивление белка в кювете, если расстояние между электродами 5 мм и относительная диэлектрическая проницаемость равна 5. Частота переменного тока 50 Гц.
- 87. Для определения диэлектрической проницаемости животного жира вырезанный из него плоский образец зажимают между двумя электродами. Площадь образца 20 см², толщина 8 мм. При пропускании через него переменного тока с частотой 1 кГц сопротивление образца оказалось 12 МОм. Определить величину диэлектрической проницаемости жира, если активное сопротивление образца было 8 МОм.
- 88. Активное сопротивление участка здоровой ткани равно 25 Ом и его электроёмкость 2,5 мкФ. Полное сопротивление этого же участка воспалённой ткани оказалось в 4 раза меньше, чем полное сопротивление здоровой ткани. Измерения проводились при частоте переменного тока 1 кГц. Какова электроёмкость воспалённой ткани?
- 89. Угол сдвига фаз между током и напряжением для кожи человека составляет 50°. Определить электроёмкость ткани, если её активное сопротивление 2,5 кОм. Измерения производились на переменном токе с частотой 2 кГц. Эквивалентная схема ткани может быть представлена как последовательно соединённые активное сопротивление и конденсатор.
- 90. Угол сдвига фаз между током и напряжением для нерва лягушки при частоте переменного тока 1 кГц равен 64°. Какова электроёмкость нерва, если его активное сопротивление 1,2 кОм? Считать активное сопротивление и ёмкость нерва соединёнными последовательно.
- 91. При лечении язвенных болезней у крупного рогатого скота положительный терапевтический эффект оказывает электрофорез ионов цинка. Сколько времени должна продолжаться процедура лечебного электрофореза, если через электрод площадью 150 см² необходимо ввести 5 мг цинка при плотности тока 0,15 мА/см²?
- 92. В ветеринарной клинической практике в лечебном электрофорезе часто используется хлористый калий. Удельное сопротивление 0,1 н раствора хлористого калия 0,78 Ом·м. Вычислить подвижности ионов калия и хлора, считая, что они практически равны друг другу по абсолютным величинам. Считать, что все молекулы растворённого вещества полностью диссоциированы.
- 93. Какой силы ток будет проходить через 0,1 н раствора бромистого калия, если на электроды, находящиеся на расстоянии 10 см друг от друга, подано напряжения 3 В. Площадь каждого электрода 8 см². Степень диссоциации 90%.
- 94. Микроэлектроды, применяемые для измерения биопотенциалов клетки, представляют собой тончайшие стеклянные капилляры, заполненные раствором хлористого калия. Определить сопротивление такого микроэлетрода с внутренним диаметром 1мкм и длиной 5 мм. Степень диссоциации 2 м раствора хлористого калия 85%.
- 95. Во сколько раз уменьшится потенциал покоя клетки, если отношение концентрации калия внутри клетки к концентрации калия во внеклеточной среде уменьшится в 2 раза? Начальное отношение концентрации равно 52.
- 96. Отношение концентраций ионов калия внутри клетки к концентрации калия во внеклеточной среде для гигантского аксона кальмара равно 41, а для клеток портняжной мышцы лягушки равно 1,2. Каково отношение мембранных потенциалов этих клеток при одной и той же температуре?
- 97. Какова концентрация ионов калия в клетках поперечнополосатых мышечных волокон лягушки, если их концентрация во внеклеточной среде равна 2,5 мМ/л, а потенциал покоя этих клеток равен 95,2 мВ? Температура тела лягушки 10°С.

- 98. Концентрация ионов хлора в гигантском аксоне кальмара равна 13 мМ/л. Какова концентрация ионов хлора во внеклеточной среде, если величина потенциала покоя равна 80 мВ? Температура тела кальмара 7°С.
- 99. Величина мембранного потенциала для клеток гладких мышц собаки равна 3 мВ. Вычислить отношение концентрации ионов хлора в наружной среде к концентрации этих ионов внутри клетки, считая температуру мышцы собаки равной 37°С.
- 100. Концентрации ионов калия и хлора в мышечных волокнах лягушки равны соответственно 140 мМ/л и 3 мМ/л. Концентрация ионов хлора во внеклеточной среде 168 мМ/л. Какова концентрация ионов калия во внеклеточной среде? Вычислить величину мембранного потенциала мышечных волокон, считая температуру тела лягушки 20°С.

Оптика и световые явления в организмах

- 101. Определить увеличение микроскопа, фокусные расстояния объектива и окуляра у которого соответственно равны 15 мм и 50 мм, а расстояние между задним фокусом объектива и передним фокусом окуляра 19 см.
- 102. Определить величину изображения среза мышечного волокна диаметром 8,5 мкм, рассматриваемого под микроскопом с фокусными расстояниями окуляра и объектива соответственно равными 14 и 0,2 см. Расстояние между фокусами объектива и окуляра 18 см
- 103. Вычислить предел разрешения объектива микроскопа в зеленом свете (длина волны 555 нм) для сухого объектива и для иммерсионного объектива, если в качестве иммерсионной жидкости используется глицерин. Апертурный угол 65°.
- 104. Будет ли видно в микроскоп волокно диаметром 0,2 мкм, если его рассматривать в зеленом свете (длина волны 555 нм) в объектив с числовой апертурой 60° и с монобромнафталином в качестве иммерсионной жидкости?
- 105. Светоотдачей называется число, показывающее величину светового потока, приходящегося на 1 Вт мощности, затрачиваемой источником света. Светоотдача лампы мощностью 150 Вт равна 12,7 лм/Вт. На поверхность стола площадью 2,8 м² направлено 25% светового потока лампы. Вычислить среднюю освещенность стола.
- 106. Над операционным столом повешен светильник из молочного стекла, имеющий форму шара диаметром 40 см. Сила света, создаваемая светильником, равна 250 кд. Определить световой поток, светимость и яркость светильника.
- 107. Солнечный свет создает на поверхности кожи человека освещенность $5 \cdot 10^4$ лк. Какова светимость и яркость освещенного участка кожи, если коэффициент отражения кожи 35%?
- 108. Вертикальная поверхность клетки с животным находится на расстоянии 4 м от УФ источника, состоящего из трех ламп ПРК-4. Одна из ламп вышла из строя. На сколько нужно передвинуть источник к клетке, чтобы ее облученность не изменилась?
- 109. Толщина стекла в теплице 3 мм. Коэффициент поглощения света стеклом (для инфракрасной части спектра, вызывающей парниковый эффект), равен 0,62 см⁻¹. Какая доля от падающей на стекло интенсивности света достигает растений?
- 110. На стекло в теплице падает свет, коэффициент поглощения которого в данном стекле равен 0,65 см⁻¹. Какой толщины стекло надо взять, чтобы внутрь теплицы попадало не менее 0,8 световой энергии, падающей на поверхность стекла?
- 111. Инфракрасные лучи длинноволнового диапазона вызывают ощущение резкой боли при падении на кожу при интенсивности 6 Дж/(см² · мин). На каком расстоянии создает ощущение резкой боли лампа мощностью 1500 Вт, если ее световой к. п. д. составляет 3%, а остальная часть энергии расходуется на создание ИК излучения?

- 112. Вычислить угол максимальной поляризации при отражении света от роговицы глаза. Под каким углом свет при этом проходит в глаз?
- 113. Вычислить угол максимальной поляризации при отражении света от сыворотки крови. Под каким углом свет при этом проходит в сыворотку?
- 114. Вычислить угол поворота плоскости поляризации раффинозы, если концентрация ее 5,14 г/мл, длина трубки поляриметра 25 см и удельное вращение раффинозы 1° 0,4 см³/ (г·дм).
- 115. Раствор глюкозы с концентрацией 0,28 г/см³ налитый в стеклянную трубку длиной 15 см, поворачивает плоскость поляризации света на 32°. Определить удельное вращение глюкозы.
- 116. При прохождении света через трубку длиной 20 см с сахарным раствором плоскость поляризации света поворачивается на угол $35,5^{\circ}$. Удельное вращение глюкозы 76 град см³/(г·дм).
- 117.Определить концентрацию раствора глюкозы, если при прохождении света через трубку длиной 20 см. плоскость поляризации поворачивается на угол 35,5°. Удельное вращение глюкозы 76 град. см $^3/(\Gamma^-$ дм).
- 118. При прохождении света через слой десяти процентного сахарного раствора толщиной 15 см плоскость поляризации поворачивается на угол 13°. В другом растворе в слое толщиной 12 см плоскость поляризации повернулась на 7,2°. Найти концентрацию второго раствора сахара.
- 119. Определить энергетическую светимость тела лошади при температуре тела 37 °C, считая, что оно излучает как серое тело с коэффициентом 0,85. На какую длину волны приходится максимум излучения тела лошади?
- 120. Опыт показывает, что облучение куриных яиц в инкубаторе наиболее эффективно при длине волны 4,1 мкм. К области спектра относится эта длина волны? Какова должна быть температура проволочной спирали в нагревательной лампе? Какое количество энергии излучает в секунду спираль лампы, если ее поверхность равна 20 мм²?

Квантовая и ядерная физика.

- 121. Определить энергию, массу и импульс фотона, соответствующего: а) видимому свету (длина волны 0,55 мкм); б) рентгеновскому излучению (длина волны 0,1 нм) и гамма-излучению (длина волны 0,001 нм).
- 122. Некоторые фотобиологические реакции связаны с диссоциацией молекул воды под действием света. Для диссоциации молекулы воды необходима энергия 12,6 эВ. Какова длина волны света, вызывающего эту реакцию?
- 123. Коротковолновое УФ излучение с длиной волны 200 нм оказывает наиболее выраженное бактерицидное действие, обусловленное изменением структуры белков, входящий в состав бактерий. Вычислить энергию необходимую для изменения структуры этих белков.
- 124. Человеческий глаз наиболее чувствителен к зеленому свету (длина волны 0,55 мкм), для которого порог чувствительности глаза соответствует 80 фотонам, падающим на сетчатку за 1 с. Какой мощности света соответствует этот порог?
- 125. Показатель поглощения подкрашенного раствора 0,735. Какая толщина слоя этого раствора уменьшает интенсивность падающего света в 2 раза?
- 126. При прохождении света через раствор крови в кювете высотой 6 см интенсивность света уменьшилась на 12%. Определить концентрацию раствора, если известно, что для него удельный показатель поглощения в законе Бера равен 0,325 л/(см⋅моль).
- 127. <Накачка> рубинового лазера, используемого в хирурги сетчатки, осуществляется в течение 1 мин газоразрядной лампой мощностью 15 Вт, световой к. п. д. которой оставляет 25%. Продолжительность вспышки лазера 0,1 мс. Какова мощность вспышки, если к. п. д. лазера 1,5%?

- 128. В офтальмологии лазерный луч применяется спайки отслоившейся сетчатки с поверхностью сосудистой оболочки. Энергия, необходимая для этой операции, равна 50 мДж. Какова интенсивность лазерного луча, если он облучает поверхность сетчатки площадью 0,05 мм² и длительность импульса 5 мс?
- 129. Для разрушения раковой опухоли полости рта животного необходима энергия светового пучка в 10^5 Дж. Опухоль облучали лазерным пучком с интенсивностью 10^8 Вт/м². Опухоль круглой формы диаметром 5 мм поглощает 20% падающего на нее излучения рубинового лазера. Сколькими импульсами необходимо облучить опухоль, если длительность каждого импульса 20 мс?
- 130. Опыты по облучению мазков крови лучами рубинового лазера показали, что при энергии луча 0,16 Дж/см² происходит разрушение эритроцитов. Какое количество энергии необходимо для разрушения одного эритроцита, если условно считать его диском диаметром 8 мкм?
- 131. Определить коротковолновую границу сплошного рентгеновского спектра, если рентгеновской трубке приложено 40 кВ.
- 132. Напряжение на рентгеновской трубке 60 кВ и сила тока в ней 4.5 мА. Какова мощность рентгеновского излучения, если к. п. д. трубки 1,5%?
- 133. Линейный показатель поглощения свинца, используемого при экранировании рентгеновского излучения, равен 52 см⁻¹. На какой глубине интенсивность рентгеновского излучения уменьшится в 10 раз?
- 134. При увеличении толщины мягкой ткани на 4 см интенсивность прошедшего через ткань пучка рентгеновских лучей уменьшилась в 9 раз. Вычислить линейный показатель поглощения ткани.
- 135. Применяемый для подавления весеннего прорастания пищевого картофеля и других овощей радиоактивный Co^{60} имеет период полураспада 5,3 года. В овощехранилище заложено количество кобальта, имеющего активность 10 Ки. Определить активность кобальта через два года.
- 136. Радиоактивный изотоп полония (Po^{210}) с активностью 120 мКи испускает альфачастицы с энергией 5,3 МэВ. Какое количество теплоты испускает этот препарат за сутки? 137. В терапевтических целях применяют, радоновые ванны, активность радона в которых $1.5 \cdot 10^{-9}$ Ки/л. Какова будет активность радона в воде через 10 суток?
- 138. Для уничтожения вредителей зерна в зернохранилищах используют радиоактивный кобальт в виде проволоки массой 1 г. Содержание радиоактивного кобальта в проволоке составляет 0,01% от массы проволоки. Определить активность радиоактивного кобальта.
- 139. Кролику массой 5 кг ввели натрий с пищей радиоактивный натрий из расчета 0,01 мкКи на 1 кг массы животного. Определить активность радиоактивного натрия в теле кролика через сутки. Естественное выведение натрия из организма принять равным 50% за сутки.
- 140. Радиоактивный йод, вводимый при биологическом эксперименте в организм ягненка, концентрируется почти полностью в его щитовидной железе. Допустимое количество йода имеет активность 0,001 мкКи на 1 г массы железы. Какую массу радиоактивного йода можно ввести ягненку, масса щитовидной железы которого 5 г?

Процедура оценивания контрольных работ

Контрольная работа по дисциплине Физика, проводится для обучающихся заочной формы обучения. За контрольную работу выставляется оценка «зачтено/не зачтено».

Объем работы составляет 7 задач из всех разделов дисциплины. Задачи выбирают по таблице, исходя из последних двух цифр № зачетной книжки студента, которая содержится в методическом указании дисциплины.

При оценке уровня выполнения контрольной работы, установлены следующие критерии:

- умение работать с объектами изучения, критическими источниками, справочной и энциклопедической литературой;
- умение собирать и систематизировать практический материал;
- умение самостоятельно осмыслять проблему на основе существующих методик;
- умение логично и грамотно излагать собственные умозаключения и выводы;
- умение анализировать и обобщать материал;
- умение пользоваться глобальными информационными ресурсами и правильно их преподнести в контрольной работе.

При оценке определяется полнота, точность и последовательность изложения мыслей при решении задач, наличие достаточных пояснений, число и характер ошибок (существенные или несущественные), а так же процент правильно решенных задач.

Критерии оценки

За контрольную работу обучающемуся выставляется:

- оценка «зачтено», если он выполнил контрольную работу по своему варианту, в контрольной работе приведены рисунки, таблицы и иллюстрации, необходимые для решения и при этом правильно или с не значительными недочетами решил не менее 6 задач контрольной работы;
- оценка «не зачтено», если он решил менее 6 задач или при решении задач допущены грубые ошибки или недочеты.

Процедура оценивания контрольных работ

Обучающиеся выполняют контрольные работы самостоятельно после изучения определенной темы. В состав контрольной работы входят не только стандартные задачи, но и задачи с практическим содержанием. Контрольная работа составляется по вариантам. При оценке уровня выполнения контрольной работы, в соответствии с поставленными целями и задачами для данного вида учебной деятельности установлены следующие критерии:

- умение самостоятельно проанализировать условие каждой задачи и выбрать метод решения;
 - умение правильно и логично провести решение задач;
 - сделать точные расчеты и получить верный ответ.

При оценке определяется последовательность и логичность приведенных расчетов в задаче, качество решения, получение правильного ответа, число и характер ошибок (существенные или несущественные).

По результатам выполнения контрольных работ обучающемуся выставляется оценка.

Критерии оценки контрольной работы

Выставляется оценка:

- «пять», если обучающийся показал умение самостоятельно проанализировать условие каждой задачи и выбрать метод решения; все задачи решены верно без логических ошибок;
- «четыре», если обучающийся показал умение правильно и логично использовать формулы и методы решения, но допустил не более двух ошибок.
- «три», если обучающийся показал слабое умение самостоятельно проанализировать условие каждой задачи и выбрать правильный метод решения, неправильно выбрал одну или две формулы, допустил вычислительные ошибки;
 - «два», если обучающийся решил правильно менее 50% заданий;
 - «один», если обучающийся не приступал к решению заданий.

Вопросы для защиты реферата

- 1. Какое явление (процесс, закон) лежит в основе рассматриваемого вопроса.
- 2. Какое биологическое действие оказывает изучаемое явление.
- 3. Какое применение находит изучаемое явление в практике с/х производства, медицине или ветеринарии.
- 4. Сформулируйте основной физический закон лежащий в основе изучаемого явления или процесса.
- 5. Какими физическими свойствами обладают материалы, о которых вы рассказали.
- 6. В чем заключается принцип механизма действия устройства, о котором вы рассказали.
- 7. Как можно ослабить (усилить) эффект действия явления или процесса о котором вы рассказали.
- 8. Что нового вы узнали, когда готовили доклад.
- 9. Как рассматриваемое вами явление (процесс, закон, устройство) может быть использовано в вашей будущей профессиональной деятельности.
- 10. Какие источники информации, которые вы использовали при подготовке реферата, больше всего вам помогли и содержали более полную и интересную для вас информацию.
- 11. Почему вы выбрали именно эту тему для сообщения.

Процедура оценивания реферата

На защиту реферата, состоящую из доклада и ответов на вопросы, отводится 10-15 минут.

При оценке реферата используется следующие критерии:

- соответствие реферата заявленной теме, поставленной цели и задачам;
- проблемность темы или ее актуальность;
- новизна или оригинальность полученных результатов;
- глубина и полнота рассмотрения темы;
- доказательная база, аргументированность, обоснованность выводов по теме;
- логичность, структурированность, целостность изложения реферата;
- речевая культура при защите реферата (стиль изложения, ясность, четкость, лаконичность, красота языка, учет аудитории, эмоциональный рисунок речи, доходчивость, пунктуальность, невербальное сопровождение, оживление речи афоризмами, примерами, цитатами и т.д.);
 - использование ссылки на информационные ресурсы (сайты, литература);
 - наглядность и презентабельность (если требуется);
- самостоятельность суждений, владение материалом, компетентность по теме реферата.

Если защита реферата сводится к краткому сообщению 5-7 минут и не может дать полного представления о проведенной работе, то оцениваются ответы на вопросы.

Критерии оценки

За защиту реферата выставляется оценка:

«Зачтено», если реферат соответствует критериям процедуры оценивания и обучающийся ответил на все предложенные вопросы правильно, четко, убедительно, показав хорошие знания по теме реферата и продемонстрировал владение материалом; «Не зачтено», если реферат не соответствует бОльшей части критериев процедуры оценивания и обучающийся ответил не на все предложенные вопросы; продемонстрировал неполное владение материалом по теме реферата, допустил несколько существенных ошибок при ответе.